Abstract
Directed energy deposition (DED) additive manufacturing (AM) is receiving growing attention in many applications, such as repair, remanufacturing, and fabrication of functionally graded structures. However, the laser-matter interactions and melt pool dynamics in laser DED with powder flow are still unclear, particularly in how pores form and flow inside the melt pool during the process. Understanding the porosity formation mechanisms is critical in the qualification, certification, and overall properties of a DED AM part. Porosity is a common phenomenon and can significantly hinder the quality of DED fabricated parts, as the pores can act as sites of crack nucleation and propagation. Here, we reveal four types of pore formation mechanisms through in-situ and operando high-speed high-resolution X-ray imaging in the DED AM process. Our results confirm that porosity within the feedstock powder induces pores in the process. We also observed pore formation mechanisms unique to the laser-based, powder-blown DED process as a result of powder delivery, keyhole dynamics, melt pool dynamics, and shield gas. High-speed X-ray images provide direct evidence for pore formation mechanisms and show that the pores related to the interaction between the delivered powder and melt pool are the largest in size in laser-based powder-blown DED AM. These results will guide porosity mitigation, elimination, and control in DED AM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.