Abstract

Laser powder bed fusion (LPBF) additive manufacturing of 2XXX series Al alloys could be used for low volume specialist aerospace components, however, such alloys exhibit hot cracking susceptibility that can lead to component failure. In this study, we show two approaches to suppress the formation of hot cracks by controlling solidification behaviour using: (1) TiB2 additions; and (2) optimisation of LPBF process parameters. Using high-speed synchrotron X-ray radiography, we monitored LPBF of Al-2139 in situ, with and without TiB2 under a range of process conditions. In situ X-ray radiography results captured the crack growth over 1.0 ms at a rate of ca. 110 mm s−1, as well as pore evolution, wetting behaviour and build height. High-resolution synchrotron X-ray computed tomography (sCT) was used to measure the volume fraction of defects, e.g. hydrogen pores and microcracks, in the as-built LPBF samples. Our results show adding TiB2 in Al-2139 reduces the volume of cracks by up to 79 % under a volume energy density of 1000 to 5000 J mm−3, as well as reducing the average length, breadth, and surface area of cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.