Abstract
Synchrotron X-ray diffraction (XRD) was used to probe the electric-field-induced response of a 500nm lead zirconate titanate (52/48, Zr/Ti) (PZT) based piezoelectric microelectromechanical system (piezoMEMS) device. 90° ferroelectric/ferroelastic domain reorientation was observed in a cantilever comprised of a 500nm thick PZT film on a 3μm thick elastic layer composite of SiO2 and Si3N4. Diffraction data from sectors both parallel- and perpendicular-to-field showed the presence of ferroelastic texture, which is typically seen in in situ electric field diffraction studies of bulk tetragonal perovskite ferroelectrics. The fraction of domains reoriented into the field direction was quantified through the intensity changes of the 002 and 200 diffraction profiles. The maximum induced volume fraction calculated from the results was 20%, which is comparable to values seen in previous bulk and thin film ferroelectric diffraction studies. The novelty of the present work is that a fully released ferroelectric thin film device of micron scale dimensions (down to 60,000μm3) was interrogated in situ with an applied electric field using synchrotron XRD. Furthermore, the experiment demonstrates that 90° ferroelectric/ferroelastic domain reorientation can be characterized in samples of such small dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.