Abstract

The local structure of nanoscale (∼10–40 nm) LiCoO2 is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO2 nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO2 metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO2 as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call