Abstract

In situ spectroscopic characterization of the interfacial structure of an organic additive at a Cu electrode is essential for a mechanistic understanding of Cu superfilling at the molecular level. In this work, we demonstrate wide-frequency attenuated total reflection surface-enhanced infrared absorption spectroscopy (wf-ATR-SEIRAS) to elucidate the dissociative adsorption of bis(sodium sulfopropyl)-disulfide (a typical accelerator) on a Cu electrode in conjunction with the electrochemical quartz crystal microbalance measurement and modeling calculations. The wf-ATR-SEIRAS clearly identifies the peaks featuring the sulfonate and methylene groups as well as the C-Ssulfonate and C-Sthiol vibrations of the adsorbate. Analysis of relative peak intensities from 1100 to 650 cm-1 reveals a more tilted alkyl chain axis for the thiolate on Cu than that on Au, which is supported by comparative density functional theory calculations. This work opens a new avenue for the wf-ATR-SEIRAS to study interfacial structures of electroplating additives related to advanced microelectronics manufacture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call