Abstract

AbstractWe proposed an in‐situ void formation technique using high‐temperature AlN growth on GaN stripes in order to reduce residual stress. Microcracks were observed during the growth of AlN; the GaN stripes then sublimated from the microcracks while keeping the AlN shell, resulting in void formation in the AlN shell structure. After GaN regrowth on this AlN shell structure, we successfully coalesced the GaN stripes to form a smooth, thick GaN layer having voids at the GaN/substrate interface. Raman spectroscopy confirmed that the residual tensile stress was decreased. The thermal stress decreased owing to the separation between the GaN layer and a foreign substrate. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.