Abstract

A novel in situ approach is proposed to visualize biofilm formation in the microchannel for the microfluidic microbial fuel cell (MMFC) anode, which could reflect a more precise biofilm formation during start-up process in real-time. A microchannel reactor was designed and fabricated based on a transparent indium-tin-oxide (ITO) conductive membrane. In situ visualization of biofilm formation under various anolyte flow rates was captured by a phase contrast microscope combined with a custom long working distance objective. The results show that no steady biofilm is formed on the surface of anode under low flow rate of 50 μL min−1 because of the insufficient nutrient supply. With increasing the anolyte flow rate, more attached bacteria on the anode surface and denser biofilm are observed in the microchannel. Less bacteria are attached on the surface of anode along flow direction due to the entrance effect. However, denser biofilm leads to larger mass transfer resistance of the anolyte and product in biofilm. Therefore, a superior bioelectrochemical performance is yielded for the biofilm formed under a moderate flow rate during start-up process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.