Abstract

The lithium-sulfur (Li-S) batteries have high theoretical energy density, exceeding that of the lithium-ion batteries. However, their practical applications are hindered by the capacity decay due to lithium polysulfide shuttle effect and sulfur volume expansion. Here, we design a S@hollow carbon with porous shell/MnOx (S@HCS/MnOx) cathode to accommodate and immobilize sulfur and polysulfides, and develop a non-destructive technique X-ray computed tomography (X-ray CT) to in situ visualize the volume expansion of Li-S cathode. The designed cathode achieves a specific capacity of ~1100 mAh g-1 at 0.2 ​C with a fade rate of 0.18% per cycle over 300 cycles. The X-ray CT shows that only 16% volume expansion and 70% volume fraction of solid sulfur remaining in the S@HCS/MnOx cathode, superior to the commercial cathode with 40% volume expansion and 5% volume remaining of solid sulfur particles. This is the first reported visualization evidence for the effectiveness of hollow carbon structure in accommodating cathode volume expansion and immobilizing sulfur shuttling. X-ray CT can serve as a powerful in situ tool to trace the active materials and then feedback to the structure design, which helps develop efficient and reliable energy storage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call