Abstract

Laser interstitial thermal therapy (LITT) remains a promising advance in the treatment of primary central nervous system malignancies. As indications for its use continue to expand, there has been growing interest in its ability to induce prolonged blood brain barrier (BBB) permeability through hyperthermia, potentially increasing the effectiveness of current therapeutics including BBB-impermeant agents and immunotherapy platforms. In this review, we highlight the mechanism of hyperthermic BBB disruption and LITT-induced immunogenic cell death in preclinical models and humans. Additionally, we summarize ongoing clinical trials evaluating a combination approach of LITT and immunotherapy, which will likely serve as the basis for future neuro-oncologic treatment paradigms. There is evidence to suggest a highly immunogenic response to laser interstitial thermal therapy through activation of both the innate and adaptive immune response. These mechanisms have been shown to potentiate standard methods of oncologic care. There are only a limited number of clinical trials are ongoing to evaluate the utility of LITT in combination with immunotherapy. LITT continues to be studied as a possible technique to bridge the gap between exciting preclinical results and the limited successes seen in the field of neuro-oncology. Preliminary data suggests a substantial benefit for use of LITT as a combination therapy in several clinical trials. Further investigation is required to determine whether or not this treatment paradigm can translate into long-term durable results for primary intracranial malignancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.