Abstract
Electrospun fibers of natural polymers are desirable for biomedical applications such as tissue engineering. Crosslinking of electrospun fibers of natural polymers is needed to prevent dissolution in water and to enhance mechanical strength. In this study, an in situ UV-crosslinking method was developed for crosslinking of gelatin electrospun fibers (GESFs) and water-soluble synthetic polymers. A mixture of gelatin and phenylazide-conjugated poly(acrylic acids) was electrospun under UV irradiation. The UV-crosslinked GESFs were not dissolved in water with improved mechanical strength. Compared to traditional crosslinking by glutaraldehyde vapor, the GESFs crosslinked by our method are superior in terms of retention of GESF morphology, uniform crosslinking throughout the fibers, low cytotoxic and retention of biofunctionality. L929 cells grew better on the UV-crosslinked GESF scaffolds compared to glutaraldehyde-crosslinked ones. Furthermore, bioactive nanoparticles, e.g. hydroxyapatite, could be incorporated into GESFs for enhancing osteoconductivity, which possess a great potential in bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biofabrication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.