Abstract

Electrochemical copolymerization of diphenylamine (DPA) with m-methoxy aniline (MA) was carried out in 4 M H2SO4 by cyclic voltammetry (CV). Cyclic voltammograms (CVs) of the copolymer films were recorded in monomer-free background electrolyte. In situ sepectroelectrochemical studies were carried out on an optically transparent electrode (Indium tin oxide (ITO) coated glass) in 4 M H2SO4 for different feed ratios of the comonomers. Constant potential and potential sweep methods were employed for performing polymerization. UV–visible absorption spectra were collected continuously and concurrently during the copolymerization in both the cases. The results from constant potential electropolymerisation indicated the formation of an intermediate with an absorption peak at 576 nm. Derivative cyclic voltabsorptogram (DCVA) was deduced from the results of cyclic spectrovoltammetry. The DCVA derived at 576 nm confirms the intermediates formed during the electrochemical copolymerization. The compositional changes of the two monomers in the copolymers with changes in feed composition of two monomers as predicted from in situ spectro electrochemical studies are evident from elemental analysis. A plausible copolymerization mechanism is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.