Abstract

ObjectiveAdipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.MethodsThe ADSCs isolated from human alpha 1 antitrypsin (M-hAAT) transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one). Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two).ResultsOur results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs (donor cells), alginate (biomaterial), and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases.

Highlights

  • Management of patients with acute and chronic hepatic failure is complex and expensive

  • Our results indicated Adipose tissue derived stem cells (ADSCs) loaded alginate microspheres were implantable into the liver

  • Transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs, alginate, and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases

Read more

Summary

Introduction

Management of patients with acute and chronic hepatic failure is complex and expensive. The mechanism of actions was not clearly elucidated but may include their ability to differentiate into hepatocyte-like cells, to reduce inflammation, and to enhance tissue repair at the site of injury. These unique characteristics make them a suitable alternative cell source for hepatocytes in a cell based therapy [7, 10]. A number of donor ADSCs was reported to remain in the spleen few weeks after transplantation [12] This indicated a loss of donor cells and could possibly lead to unwanted side effects at non-target organs. To maximize the number of donor cells which could be locally delivered to the liver, we developed a strategy of in situ transplantation, in which donor ADSCs are bioencapsulated into a biomaterial and transplanted directly into the liver tissue by simple injection

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.