Abstract

Metal sulfides are a type of potential anode materials for lithium-ion batteries (LIBs). However, their electrochemical behaviors and mechanism during the charge and discharge process remain unclear. In the present paper, we use CoS2 as a model material to investigate their electrochemical process using in situ transmission electron microscopy (TEM). Two kinds of reaction behaviors are revealed. The pure CoS2 particles show a side-to-side conversion process, in which large and anisotropic size expansion (47.1%) occurs that results in the formation of cracks and fractures in CoS2 particles. In contrast, the CoS2 particles anchored on reduced graphene oxide (rGO) sheets exhibit a core-shell conversion process involving small and homogeneous size expansion (28.6%) and few fractures, which attributes to the excellent Li(+) conductivity of rGO sheets and accounts for the improved cyclability. Single-crystalline CoS2 particle converts to Co nanocrystals of 1-2 nm embedded within Li2S matrix after the first lithiation. The subsequent electrochemical reaction is a reversible phase conversion between Co/Li2S and CoS2 nanocrystals. Our direct observations provide important mechanistic insight for developing high-performance conversion electrodes for LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.