Abstract
The growth of Ge nanowires in water inside a liquid transmission electron microscope (TEM) holder has been demonstrated at room temperature. Each nanowire growth event was stimulated by the incident electron beam on otherwise unsupported liquid Ga or liquid In nanodroplets. A variety of conditions were explored, including liquid metal nanodroplet surface condition, liquid metal nanodroplet size and density, formal concentration of dissolved GeO2, and electron beam intensity. The cumulative observations from a series of videos recorded during growth events suggested the following points. First, the conditions necessary for initiating nanowire growth at uncontacted liquid metal nanodroplets in a liquid TEM cell indicate the process was governed by solvated electrons generated from secondary electrons scattered by the liquid metal nanodroplets. The attained current densities were comparable to those achieved in conventional electrochemical liquid-liquid-solid (ec-LLS) growths outside of a TEM. Second, the surface condition of the liquid metal nanodroplets was quite influential on whether nanowire growth occurred and surface diffusion of Ge adatoms contributed to the rate of crystallization. Third, the Ge nanowire growth rates were limited by the feed rate of Ge to the crystal growth front rather than the rate of crystallization at the liquid metal/solid Ge interface. Estimates of an electrochemical current for the reduction of dissolved GeO2 were nominally in line with currents used for Ge nanowire growth by ec-LLS outside of the TEM. Fourth, the Ge nanowire growths in the liquid TEM cell occurred far from thermodynamic equilibrium, with supersaturation values of 104 prior to nucleation. These collective points provide insight on how to further control and improve Ge nanowire morphology and crystallographic quality by the ec-LLS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.