Abstract
In situ transmission difference FTIR spectroscopy method was introduced for studying the anodic oxidation of methanol in acid aqueous solution. A minigrid Pt optically transparent thin layer electrode was used as working electrode. This method has the ability to clarify the identity of species involved in the oxidation process both in solution and adsorbed at the surface of electrode. From the results of in situ transmission difference FTIR spectroscopy measurement it was found that HCHO, HCOOH, HCOOCH 3 and CH 2(OCH 3) 2 could be formed in the oxidation process of methanol. The final product was CO 2. The adsorbed poisonous intermediate CO was detected. It was formed at near 0.6 V and became significant at 0.9 V, where the oxidation current was inhibited. The in situ transmission difference FTIR spectroscopy method is a very convenient, relative simplicity and efficient method for investigating the electrochemical process, and could be as a good candidate for further application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.