Abstract

There is considerable interest in combining bioactive polymers such as chitosan with titanium bone implants to promote bone healing and address therapeutic needs. However, the fate of these biodegradable polymers especially on titanium implants is not fully explored. Here we report in situ formation of chitosan microtube (CMT) structures from chitosan films on the implant surface with titania nanotubes (TNTs) layer, based on phosphate buffer-induced transformation and precipitation process. We have comprehensively analyzed this phenomenon and the factors that influence CMT formation, including substrate topography, immersion solution and its pH, effect of coating thickness, and time of immersion. Significance of reported in situ formation of chitosan microtubes on the TNTs surface is possibly to tailor properties of implants with favorable micro and nano morphology using a self-ordering process after the implant's insertion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call