Abstract
As anode materials, the electrochemical performance of layered transition metal dichalcogenides (TMDs), can be improved with surface layer protection. In this study, flower-like MoSe2 nanostructures are easily obtained from a solvothermal reaction followed by an annealed process in inert atmosphere. Then the MoSe2 nanostructures are further treated in air at 350 °C, and amorphous MoO3 can be formed on MoSe2 surfaces, resulting into MoSe2/MoO3 heterogeneous nanostructures. The MoSe2/MoO3 composite, as anode materials for sodium ion batteries (SIBs), shows better performance than those of pristine MoSe2, which includes charge/discharge capacity, cycling stability and rate capability. At low current of 50 mA g−1, the discharge capacity can reach as high as 729 mAh g−1. In addition, even at high current of 10 A g−1, the discharge capacity maintains at 314 mAh g−1. At high currents of 1000 and 2000 mA g−1, after 200 cycles, the capacity retention can be kept at 101.9% and 99.5%, respectively. The enhanced performance of MoSe2/MoO3 heterogeneous nanostructures can be attributed to the amorphous MoO3 surface layer, which prevents selenium dissolution and subsequently improves the cycle performance and increases sodiation/desodiation kinetics because of the amorphous nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.