Abstract
Ni-based composite coatings reinforced by TiBX/TiXNiY/TiC with different Ti6Al4V contents were precipitated on a 35CrMoV substrate via laser cladding. The phase composition, elemental distribution, and precipitated phases of the coatings were characterised using X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The mechanical and tribological properties of the cladding layer were also characterised. The results showed that the coating contained TiB2, TiC, TiB, Ni3Ti, and NiTi2 phases with uniform elemental distribution and grain refinement. A schematic of the growth model and precipitation sequence of the reinforced phases was generated. The microstructure, elemental segregation, hardness, and friction behaviour of the cladding layer were significantly influenced by the addition of Ti6Al4V. The optimal microstructure and best mechanical properties were obtained by the addition of 4 wt% Ti6Al4V, with that coating possessing a hardness, average friction coefficient, and wear volume of 770.8 HV1, 0.180 and 6132 um3, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.