Abstract

Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call