Abstract

Clean Pt nanoclusters with a diameter of 1.0–2.4 nm, supported on reduced graphene oxide (rGO) nanosheets, were successfully synthesized by simple in situ thermolysis of a Pt-carbonyl complex. The supported Pt nanoclusters are in an electron-deficient state because of the electron transfer between the nanoclusters and the rGO sheets. The as-prepared Pt-1 nm/rGO shows high catalytic activity for the 100% selective hydrogenation of nitrobenzene, with the turnover frequency (TOF) reaching 975.4 h−1 at 25°C and 1 atm. This number is higher than the previously reported value for the heterogeneously catalyzed hydrogenation of nitrobenzene. The proposed process follows a direct hydrogenation mechanism, as is revealed by the analyses of the intermediate products. This work presents a facile and effective synthetic approach for achieving highly efficient nanocatalysts, and can be extended to obtain other metal catalysts with ultra-small sizes and excellent performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call