Abstract

A non-destructive thermographic methodology based on the temperature field is utilized to determine the crack tip position during the very high cycle fatigue (VHCF) test of pure iron and deduce the corresponding fatigue crack growth rate (FCGR). To this end, a piezoelectric fatigue machine is employed to test 1 mm thick pure iron samples at 20 kHz in push–pull fatigue loading. Two cameras are placed on each side of the plate sample, an infrared one for measuring the temperature fields on the specimen surface and an optical one for visualizing the crack tip verification. The centre section of the specimen is notched to initiate the crack. The temperature field is converted into intrinsic dissipation to quantify the inelastic strain energy according to energy conservation. The maximum value of intrinsic dissipation in each thermal image is related to the position of the crack tip and thus allows monitoring of the crack evolution during the fatigue test. The obtained results show that one specific specimen broke at 7.25 × 107 cycles in the presence of a very low-stress amplitude (122 MPa). It is observed that the intrinsic dissipation has a low-constant level during the initiation and the short cracking, then sharply grows during the long cracking. This transition is visible on the polished surface of the sample, where the plasticity appears during the long cracking and slightly before. The material parameters in the Paris equation obtained from the intrinsic dissipation in the short crack growth are close to the results available in the literature as well as those obtained by the optical camera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call