Abstract

ABSTRACTIn situ thermal polymerization of a model ionic liquid monomer and ionic liquids mixture to form gel electrolytes is developed for quasi‐solid‐state dye‐sensitized solar cells (Q‐DSSCs). The chemical structures and thermal property of the monomers and polymer are investigated in detail. The effect of iodine concentration on the conductivity and triiodide diffusion of the gel electrolytes is also investigated in detail. The conductivity and triiodide diffusion of the gel electrolytes increase with the increasing I2 concentration, while excessive I2 contents will decrease the electrical performances. Based on the in situ thermal polymeric gel electrolytes for Q‐DSSCs, highest power conversion efficiency of 5.01% has been obtained. The superior long‐term stability of fabricated DSSCs indicates that the cells based on in situ thermal polymeric gel electrolytes can overcome the drawbacks of the volatile liquid electrolyte. These results offer us a feasible method to explore new gel electrolytes for high‐performance Q‐DSSCs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42802.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.