Abstract
Optimization and miniaturization of existing electronic devices require the development of advanced nanostructured materials with high phase and structural purity. Over the past decade, barium titanate (BaTiO3) has attracted considerable attention due to its outstanding ferroelectric and dielectric properties. The present study involved the investigation of the phase transition and structural stability of tetragonal BaTiO3 nanopowders with pseudo-cubic phase using an in-situ high resolution and high temperature X-ray diffraction method. Under ambient conditions, the coexistence the tetragonal and cubic phases with weight fractions of 75.7% and 24.3%, respectively, was determined in BaTiO3. In the temperature range of 25 °C-300 °C, phase boundaries of BaTiO3 (180 nm in size) exhibiting several phases were detected. The phase transformation behavior, relative crystal phase content, lattice parameters, crystallite size, and tetragonality of the BaTiO3 nanopowders were established by the Rietveld refinement method at the onset temperature from 25 °C to 300 °C. Up to 150 °C, the nanopowders exhibited a complete transition of the cubic phase. Additionally, a complete tetragonal to cubic transformation was accomplished by a decrease of tetragonality at 125 °C and an increase in the crystallite size at 300 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.