Abstract

Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide–cobalt (WC–Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC–Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call