Abstract
Polymethylpentene (PMP) polymers can be used to make advanced optics, especially for midinfrared (MIR) ultrafast optics. In this study, an optical parametric converter pumped by a Ti sapphire femtosecond laser was used to investigate the polymer. The thermal effect generated by loosely focused femtosecond near mid-infrared (MIR) pulses in bulky materials is observed in real-time, and the polymer exhibits thermal stability and conformability. To avoid strong linear absorption and to increase the nonlinear damage threshold, the spectral region for ultrafast applications is 1310 nm (0.95 eV)–1350 nm (0.92 eV). For the process in region VI, there is a sign of stronger coupling for short-wavelength photons, and the pulse duration is recommended to be lower than 160 fs. In the ultraviolet (UV) region, filamentary writing using a low-focused beam, the laser peak power was selected in the range of 2.2 MW–9.2 MW. High-density bulky gratings were written. The refractive-index modulation was significant, and the polymer exhibited highly nonlinear features. This study provides insights into the applications and production of PMP polymers in laser optics and laser engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.