Abstract

The injection of grout into multi-leaf stone masonry walls with a sufficient amount of voids can be an effective technique for the seismic strengthening of such walls. In order to evaluate the effectiveness of different types of commercial grouts that fulfilled the adopted criteria, the stone masonry walls of an actual building were strengthened by means of grout injection, using cement and combined cement–lime grouts. The quality and effectiveness of grout injection technique was assessed by non-destructive tests (sonic and radar tests), minor destructive tests (surface and in-depth probing and coring, and the double flat jack test), and destructive test (shear-compressive test), all in situ. Preliminary laboratory tests were also performed on mortar and stone specimens, on the injection grouts, and on cylinders representing the inner core of the strengthened walls. Finally, the seismic resistance of the building was evaluated in non-strengthened and strengthened variants (i.e. after grout injection of the walls with cement or lime–cement grout) by means of non-linear static analysis, using the pushover method. Obtained results show that shear characteristics of the walls (tensile strength and stiffness) depend significantly on the type and properties of the injected grout, i.e. on the grout’s ability to achieve a solid bond between the stones and the leaves including the properties (strength and stiffness) of the grout itself. In the case of the type of masonry under consideration, an adequate level of seismic resistance can be achieved also by using combined cement–lime grouts, although cement grout can provide higher seismic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call