Abstract

Temperature monitoring is important for improving the safety and performance of Lithium Ion Batteries (LIB). This paper presents the feasibility study to insert flexible polymer embedded thin film thermocouples (TFTCs) in a lithium ion battery pouch cell for in-situ temperature monitoring. A technique to fabricate polyimide embedded TFTC sensors on glass substrates and later transfer it onto thin copper foils is presented. The sensor transfer process can be easily integrated into the assembly process of a pouch cell, thus holding promise in implementing in Battery Management Systems (BMS). Internal temperature of the LIB pouch cell was measured in-situ when the sensor embedded battery was operated at high rate charge–discharge cycles. The polyimide embedded TFTCs survived the battery assembly process and the battery electrolyte environment. It is observed that the heat generation inside the battery is dominant during the high-rate of discharges. The developed technique can serve to improve the battery safety and performance when implemented in battery management systems and enhance the understanding of heat generation and its effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.