Abstract
Hydrogen is attracting attention as an energy carrier for realizing a low-carbon society, because it can directly convert the energy obtained from chemical reactions into electrical energy without carbon dioxide emissions. This paper presents in situ transmission electron microscopy (TEM) observations related to hydrogen storage in metal and metal hydrides, hydrogen embrittlement of metallic materials used for storing and transporting hydrogen in containers and pipes, and fuel cells and water electrolysis using metal catalysts and oxides as electrode materials. All of these processes are important for practical applications of hydrogen. Numerous in situ TEM studies have revealed the microscopic structural changes when hydrogen reacts with the materials, when hydrogen is solidly dissolved in the materials and during the operation of the material. This review is expected to facilitate further development of TEM operando observations of hydrogen-related materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.