Abstract

A drug-delivery approach was developed through effective preparation of bio-nanocomposite hydrogels in situ with ZnO/CuO/Ag nanoparticles being formed within swollen carboxymethyl chitosan (CMCh)/poly(vinyl alcohol) (PVA) hydrogels. Different experimental techniques, including Fourier transform-infrared, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, and scanning electron microscopy (SEM) were applied to study and compare the prepared hydrogels. XRD and EDX analyses confirmed the formation of nanoparticles in the hydrogel matrix, while SEM micrographs showed that ZnO, CuO and Ag nanoparticles ranged from 36.26 to 76.09 nm, 34.15–71.71 nm and 36.21–78.47 nm within the same matrix, respectively. According to the results, an increased number of nanoparticles resulted from increased ion concentration. At pH 2.1 and pH 7.4, the bio-nanocomposite hydrogels were investigated in terms of the swelling behaviour; in comparison with neat CMCh/PVA hydrogel, they showed a pH-sensitive swelling ratio. As an in-vitro drug release test, the bio-nanocomposite hydrogels were applied to sustained and controlled drug-delivery system that increased with the increase in nanoparticles content that could result in protracted release of the ibuprofen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.