Abstract
Metal-organic frameworks (MOFs) have gained tremendous notice for the application in alkaline water/seawater oxidation due to their tunable structures and abundant accessible metal sites. However, exploring cost-effective oxygen evolution reaction (OER) electrocatalysts with high catalytic activity and excellent stability remains a great challenge. In this work, a promising strategy is proposed to regulate the crystalline structures and electronic properties of NiFe-metal-organic frameworks (NiFe-MOFs) by altering the organic ligands. As a representative sample, NiFe-BDC (BDC: C8H6O4) synthesized on nickel foam (NF) shows extraordinary OER activity in alkaline condition, delivering ultralow overpotentials of 204, 234 and 273 mV at 10, 100, and 300 mA cm−2, respectively, with a small Tafel slope of 21.6 mV dec−1. Only a slight decrease is observed when operating in alkaline seawater. The potential attenuation is barely identified at 200 mA cm−2 over 200 h continuous test, indicating the remarkable stability and corrosion resistance. In-situ measurements indicate that initial Ni2+/Fe2+ goes through oxidation process into Ni3+/Fe3+ during OER, and eventually presents in the form of NiFeOOH/NiFe-BDC heterojunction. The unique self-reconstructed surface is responsible for the low reaction barrier and fast reaction kinetics. This work provides an effective strategy to develop efficient MOF-based electrocatalysts and an insightful view on the dynamic structural evolution during OER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.