Abstract

Ti[Formula: see text] self-doped TiO2 (TiO[Formula: see text])/N-doped carbon nanostructure composites were prepared via a facile one-step hydrothermal method to optimize the use of visible light and reduce recombination of photogenerated electrons and holes. The composites were characterized by X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The amounts of carbon and nitrogen sources affect the morphology and photocatalytic performance. At low amounts of the sources, the N-doped carbon nanostructure is an amorphous film and is well-combined with TiO[Formula: see text] nanoparticles through surface carbon–oxygen groups. At high amounts of the sources, N-doped carbon quantum dots (NCQDs) were obtained, and carbon atoms could substitute for oxygen atoms in the TiO2 lattice to form Ti–C structures, which are responsible for the high photocatalytic activity under visible light illumination. Transient photocurrent response and electrochemical impedance spectroscopy results indicate that the amorphous hybrid film becomes a trap for electrons and that NCQDs can accelerate electron transfer. The improved visible light photocatalytic property for the TiO[Formula: see text]/NCQDs composite can be attributed to the enhancement of light absorption and inhibition of the photogenerated electron–hole recombination of anchored NCQDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call