Abstract

Removing hazardous organic pollutants, such as 4-nitrophenol (4-NP) and Congo red (CR) dyes from aqueous media and CO2 from the atmospheric medium remains a significant challenge. Herein, we report a facile in-situ synthetic approach for fabricating CuO-ZnO heterostructure photocatalysts through the surfactant-assisted co-precipitation method. The catalytic results demonstrate that the Cu1O-ZnO photocatalyst exhibits excellent activity under direct sunlight irradiation, owing to the heterostructure formation between the CuO and ZnO. The Cu1O-ZnO photocatalyst showed higher reaction rate constant (k) values of 0.20 min−1 for 4-NP and 0.09 min−1 for CR compared to previous reports. Additionally, efficient CO2 reduction was also achieved over Cu1O-ZnO photocatalyst. The optical and structural characterization results indicate that the improved photocatalytic reduction and degradation observed for the Cu1O-ZnO photocatalyst can be attributed to the strong synergistic interaction between p-type CuO and n-type ZnO and the construction of the p-n heterojunction. As a result, the absorption of visible light distinctly increased and inhibited the recombination rate of the photo-created electron-hole (e−/h+). Furthermore, the Cu1O-ZnO photocatalyst exhibited remarkable durability and recyclability, retaining high photoactivity (≥ 93%) after five cycles, demonstrating its potential for real-world applications in the photocatalytic reduction and degradation reactions under direct sunlight irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.