Abstract

The purpose of this paper is to investigate the possibility of rod-like Al2TiO5 / α-Al2O3 composites in situ formation via a mechanical activation process. A QM-ISP-4 Planetary Mill was employed to activate mechanically the mixtures of anatase and corundum in air at room temperature for different times. The milled powder mixtures were pressed into platelets and then sintered in air at 1300°C for 3 h. The XRD results showed that only Al2TiO5 and α-Al2O3 phases could be detected in the sintered samples when the activated time reached 30 hours. The SEM observations illustrated the unusual microstructure of Al2TiO5 / α-Al2O3 ceramic composite materials. Abnormal grains with longitudinal length ~10 μm23 transversal length ~1 μm and equiaxed matrix grains of ~3 μm on an average were observed. EDXA proved that the rod-like grains and the fine equiaxed matrix grains were composed of Al2TiO5 and α-Al2O3, separately. The roles of anisotropic grain growth caused by mechanical activation are discussed for the in situ formation of rod-like Al2TiO5 / α-Al2O3 ceramic composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.