Abstract
Abstract This paper demonstrates the utilisation of in-situ synthesised novel metal organic framework (MOF)-polymer nanocomposite laser-sintered parts with enhanced CO2 adsorption properties. Making use of polyamide PA12, one of the most common materials in powder bed fusion process as the base polymer, an in-situ synthesis of nanofiller ZIF-67 crystals on the surface of polyamide polymer particles was proposed to allow the fabrication of a nanocomposite powder with a good dispersion, reducing any health and safety handling issue arising from use of loose nanoparticles. This in-situ synthesis method allowed a maximum exposure of the ZIF-67 nano-porous sites. Laser sintering was used to fabricate porous structures with additional macro-pores and controlled cavities to increase the surface area. The laser-sintered ZIF67-PA12 part at only 2.6% wt ZIF-67 concentration exhibited a CO2 capacity of 3.02 and 4.89 cm3/g at 298 K and 273 K at 1 bar. This in-situ synthesis method of making ZIF67-PA12 powders combined with the design freedom and the ease of fabrication of parts opens opportunities in a wider range of applications for MOFs such as energy storage and conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.