Abstract

AbstractHydrogels that are both highly conductive and mechanically robust have demonstrated great potential in various applications ranging from healthcare to soft robotics; however, the creation of such materials remains an enormous challenge. This study presents an in situ synthesis strategy for developing bioinspired chemically integrated silica‐nanofiber‐reinforced hydrogels (SFRHs) with robust mechanical and electronic performance. The strategy is to synthesize soft hydrogel matrices from acrylamide monomers in the presence of well‐dispersed silica nanofibers and vinyl silane, which generates homogenous SFRHs with innovative interfacial chemical bonds. The resultant SFRHs exhibit excellent mechanical properties including high mechanical strength of 0.3 MPa at a fracture strain of 1400%, high Young's modulus of 0.11 MPa (comparable to human skin), and superelasticity over 1000 tensile cycles without plastic deformation, while maintaining high transmittance (≥83%). In parallel, the SFRHs show enhanced ionic conductivity (3.93 S m−1) and can monitor multiple stimuli (stretching, compressing, and bending) with high sensitivity (gauge factor of 2.67) and ultra‐durability (10 000 cycles). This work may shed light on the design and development of tough and stretchable hydrogels for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.