Abstract

In this work, manganese oxide‑carbon nanocomposite catalytic materials (MnO@CNs) with a “core-shell” structure were synthesized in the one-step synthesis using sodium alginate as a template. XRD and Raman spectroscopy proved that high calcination temperatures were beneficial to the graphitization of carbon and the formation of Mn7C3. Both SEM and TEM images of MnO@CNs identified that MnO nanoparticles were encapsulated in a three-dimensional carbon matrix and simultaneously protected by a “carbon-shell” with an adherent graphite structure, which could facilitate electron transfer. The MnO@CNs could activate PS to degrade BPF completely within 30 min in solutions with a wide pH range or coexisting anions and organics. The valence change of Mn could promote the generation and conversion of various free radicals and non-radicals, of which O2·− played a leading role in the decomposition of BPF. In addition, the potential degradation pathways and degradation mechanisms of BPF in the MnO@CNs/PS system were also explored according to DFT calculations and product detection results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.