Abstract

NiO and NiCo2O4 exhibit excellent synergistic effects and broad application prospects in electrochemical applications. However, the apparent interfacial instability between NiO and NiCo2O4 limits ion transport kinetics, charge/ion transfer, and electrochemical stability. In response, we developed and designed an integrated dodecahedron NiO/NiCo2O4 by a facile in-situ calcination method. Moreover, by utilizing the porous hollow structure of nitrogen-doped carbon capsules (N-Cc) as a conductive network, the N-Ccx@NiO/NiCo2O4 heterostructures with stable interface structure, excellent electrolyte adsorption, and electron transfer pathways were carefully designed. The N-Cc1.0@NiO/NiCo2O4 heterostructures are found to deliver an outstanding specific capacitance of 658.8 F g−1, and a high energy density of 101.40 Wh kg−1 at a power density of 775.03 W kg−1, along with capacitance retention of more than 93.5% after 8000 cycles. Based on the DFT calculations and electrochemical experimental results, this work provides an effective in situ route for the construction of high-performance metal oxide heterostructure electrode materials for new energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call