Abstract

AbstractIn this paper, silicon nitride (Si3N4) ceramics with black color and high toughness were fabricated by gas pressure sintering and characterized by X‐ray diffraction, Raman, scanning electron microscopy, EDS, and transmission electron microscopy. The in situ formed cobalt silicide was confirmed to contribute to the black color through the introduction of CoO. Due to the addition of CoO, the growth of β‐Si3N4 grains is promoted, forming elongated grains, and eventually forms the self‐reinforcing microstructure. However, with adding excessive CoO, interfacial debonding is found between cobalt silicide and Si3N4 matrix and a decrease in strength was resulted. The optimum composition is 1 mol% CoO in Si3N4, with the fracture toughness of 9.9 ± 0.3 MPa m1/2, flexural strength of 826.1 ± 46.0 MPa, and a much darker black color. The mechanism of color formation is discussed where the black color derives mainly from the metallic silicon and additionally the porosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.