Abstract

Chromium carbide nanopowder (Cr3C2) has been synthesized from chromium oxide (Cr2O3) by chemical-reduction route under autogenic pressure of hydrogen and CO gases at 87MPa. The reduction of Cr2O3 to Cr3C2 has taken place at a relatively low temperature (700°C) in the presence of Mg in an autoclave. The increased pressure of hydrogen and CO gases facilitates the reduction and carburization simultaneously which helps in reducing the reaction temperature. The nanopowder shows faceted morphology as observed in TEM. High resolution transmission electron micrographs reveal that the size of Cr3C2 powders varies in the range of 30–40nm and is coated by 12–13 layers of carbon with average thickness of 3.5–4nm. Thermal stability of the as-obtained product was investigated by TGA/DTA analysis. Based on the experimental results, possible reaction mechanism for the transformation and formation of nanopowder is discussed in the light of the obtained structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.