Abstract

A novel ceria (CeO2)–ordered mesoporous carbon (OMC) modified electrode for the sensitive amperometric determination of hydrazine was reported. CeO2–OMC composites were synthesized via a hydrothermal method at a relatively low temperature (180°C) and characterized by scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The CeO2–OMC modified glassy carbon electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and indicated good electrocatalytic effect to the oxidation of hydrazine. Under the optimized conditions, the present sensor could be used to measure hydrazine in wide linear range from 40nM to 192μM (R2=0.999) with a low detection limit of 12nM (S/N=3). Additionally, the sensor has been successfully applied to detect hydrazine in real water samples and the recoveries were between 98.2% and 105.6%. Eventually, the sensor exhibited an excellent stability and reproducibility as a promising method for determination of hydrazine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call