Abstract
We report a facile method to in situ synthesize Bi nanoflakes on Ni foam (Bi/Ni) via a replacement reaction, which can directly work as an anode for sodium-ion batteries (SIBs) without further treatment. The integrated nanoflake structure of the Bi/Ni effectively accommodates the dramatic volume changes of Bi during cycling, and favors both electron and Na+ transport through the electrode. This ensures high cycling performance and good rate capability. The sodiation/desodiation of Bi is revealed to be composed of two successive steps: Bi ↔ NaBi and NaBi ↔ Na3Bi. This facile strategy will encourage more investigations into the design and synthesis of integrated electrodes for high-performance SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.