Abstract

AbstractThe Kyropoulos growth technique has been combined with in-situ synthesis to yield high purity undoped crystals of 300 to 700 gm charges of InP. Etched wafers show a uniform dislocation density across 70mm diameter in contrast with the "W" pattern created by LEC. Use of an axial magnetic field in Kyropoulos growth reduces the dislocation density by an order of magnitude, to 1 × 104cm-2. By combining Kyropoulos growth with in-situ synthesis of the indium phosphide, high mobility (4.6×104 at 77 C) undoped single crystals have been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.