Abstract

While active materials based on germanium (Ge) are considered as a promising alternative anodic electrode due to their relatively high reversible capacity and excellent lithium-ion diffusivity, the quite unstable structural/electrochemical stability and severe volume expansion or pulverization problems of Ge electrodes remain a considerable challenge in lithium ion batteries (LIBs). Here, we present the development of Ge embedded in one-dimensional carbon nanostructures (Ge/CNs) synthesized by the modified in situ electrospinning technique using a mixed electrospun solution consisting of a Ge precursor as an active material source and polyacrylonitrile (PAN) as a carbon source. The as-prepared Ge/CNs exhibit superior lithium ion behavior properties, i.e., highly reversible specific capacity, rate performance, Li ion diffusion coefficient, and superior cyclic stability (capacity retention: 85% at 200 mA g(-1)) during Li alloying/dealloying processes. These properties are due to the high electrical conductivity and unique structures containing well-embedded Ge nanoparticles (NPs) and a one-dimensional carbon nanostructure as a buffer medium, which is related to the volume expansion of Ge NPs. Thus, it is expected that the Ge/CNs can be utilized as a promising alternative anodic material in LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.