Abstract

Lithium-sulfur (Li-S) batteries are a promising technology capable of reaching high energy density of 500–700 Wh kg−1, however the practically achievable performance is still lower than this value. This hindrance can be attributed to a lack of understanding of the fundamental electrochemical processes during Li-S battery cycling, in particular the so-called redox shuttle effect which is due to the relatively high solubility of polysulfide intermediates in the electrolyte. Herein, the effects of LiNO3 as an additive as well as C4mpyr-based ionic liquids (ILs) in electrolyte formulations for Li-S cells are analysed using in situ X-ray powder diffraction (XRD) and ex situ soft X-ray absorption spectroscopy (sXAS) techniques. Whilst LiNO3 is known for its protective properties on the lithium anode in Li-S cells, our studies have provided further evidence for suppression of Li2S deposition when using LiNO3 as an additive, as well as affecting the solid electrolyte interphase (SEI) layer at a molecular level. Moreover, the detected sulfur species on the surface of the anode and cathode, after a few cycles are compared for IL and organic-based electrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.