Abstract

Electrochemical approaches provide unique means to fabricate thin films of metal-organic frameworks (MOFs). However, the kinetics of electrochemical MOF deposition has not been quantitatively investigated so far. In this study, we report the first in situ measurements of electrochemical MOF growth using transmission synchrotron X-ray scattering. Electrochemical cells based on poly(lactic acid) with two windows were fabricated using fused-deposition modeling. The resulting three-dimensional (3D)-printed cells, the surface of which was coated with paraffin wax to prevent solvent percolation through the polymer material, were used to monitor the cathodic growth of zeolitic imidazolate framework-8 (ZIF-8) on graphite in a methanol solution containing ZnCl2 and 2-methylimidazole (Hmim) at different cathodic potentials. The resulting time-resolved X-ray diffraction data showed a gradual increase in crystal size with negligible changes in crystal orientation during the cathodic ZIF-8 deposition. More importantly, the time-resolved data provided a means to quantitatively assess the kinetics of the cathodic ZIF-8 growth using the Gualtieri model, revealing that the cathodic potential and Hmim concentration affected crystal growth kinetics but not nucleation kinetics. These ZIF-8 samples exhibited changes in X-ray diffraction patterns after being washed with methanol and dried in air, indicating that in situ measurements are essential to investigate mechanisms behind MOF electrodeposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call