Abstract

Stress-induced martensitic transformation of as-sputtered and post-annealed Ti50.1Ni40.8Cu9.1 thin films was investigated using in-situ synchrotron X-ray diffraction (S-XRD) technique. For the as-deposited film, in-situ S-XRD analysis showed a martensitic transformation from parent phase to martensite during initial loading, followed by reorientation of martensite variants via detwinning. This detwinning process induced a strong 〈020〉 fiber texture along the loading direction and a strong 〈002〉 fiber texture perpendicular to the loading direction. For the 650°C annealed film, there is only elastic deformation, followed by a martensitic transformation during deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.