Abstract
K2CsSb is a promising photocathode candidate to serve as an electron source in next-generation light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). As the traditional recipe for creation of K2CsSb photocathodes typically results in a rough surface that deteriorates electron beam quality, significant effort has been made to explore novel growth methods for K2CsSb photocathodes. In this paper, a method of ternary co-evaporation of K, Cs, and Sb is described. By using in-situ synchrotron X-ray techniques, the quality of the photocathode is characterized during and after the growth. K2CsSb photocathodes grown by this method on Si (100) and MgO (001) substrates show strong (222) texture, and the two photocathodes exhibit 1.7% and 3.4% quantum efficiencies at a wavelength of 530 nm, with a rms surface roughness of about 2–4 nm. This represents an order of magnitude reduction in roughness compared to typical sequential deposition and should result in a significant improvement in the brightness of the generated electron beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.