Abstract

Conventional hydrides obtained thus far contain at least one type of metal with high hydrogen affinity, which can form metal hydrides near ambient pressure. In contrast, we synthesized metal hydrides comprising only metals with low hydrogenation affinity which are metals that do not form metal hydrides MHx (M stands for metal element, x > 0.5) below 1 GPa. This is because such hydrides are rare and would demonstrate novel properties and functionalities. To provide a guideline for synthesizing such hydrides, we clarified the hydrogenation reaction processes of FexMo1−x alloys at 6 GPa and 750 °C over a wide composition range of 0.41 ≤ x ≤ 0.88, where both Fe and Mo demonstrate low hydrogen affinities. Depending on the alloy composition, the hydrogenation reaction process can be classified into three types. Two kinds of novel hydrides were synthesized herein. First, FexMo1−xH (0.50 ≤ x ≤ 0.74) with metal elements at the vertices of hexagonal close-packed (hcp) lattices, and second, Fe0.88Mo0.12H with a complex crystal structure, which is likely to be a long-period close-packed structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.