Abstract

In situ X-ray synchrotron radiation computed tomography (SRCT) of carbon fiber composite laminates reveals the first-ever qualitative and quantitative comparisons of 3D progressive damage effects introduced by two mechanical enhancement technologies: aligned nanoscale fiber interlaminar reinforcement and thin-ply layers. The technologies were studied individually and in combination, using aerospace-grade unidirectional prepreg standard-thickness (‘std-ply’) and thin-ply composite laminates. The relatively weak interlaminar regions of the laminates were reinforced with high densities of aligned carbon nanotubes (A-CNTs) in a hierarchical architecture termed ‘nanostitching’. Quasi-isotropic double edge-notched tension (DENT) laminates were tested and simultaneously 3D-imaged via SRCT at various load steps, revealing a progressive 3D network of damage micro-mechanisms that were segmented according to modality and extent. For load steps of 0%, 70%, 80%, and 90% of baseline ultimate tensile strength (UTS), intralaminar matrix cracking and fiber/matrix interfacial debonding are found to be the dominant damage mechanisms, common to all laminate types. For both std-ply and thin-ply, nanostitched laminates had qualitatively and quantitatively similar matrix damage modality and extent compared to the baseline laminates through 90% UTS, including relatively few delaminations, despite an ~9% increase in std-ply nanostitched UTS over the std-ply baseline. Complementary finite element-based modeling of damage predicts greater delamination extent in std-ply vs. thin-ply laminates that manifests only between 90% and 100% UTS, offering an explanation for the observed positive nanostitch effect in the std-ply, which is known to be more susceptible to delamination formation and growth than the thin-ply laminates. Thin-ply, with and without nanostitch, intrinsically suppresses matrix damage, as expected from past work and evidenced here by 6.5X less overall matrix damage surface area vs. std-ply baseline laminates averaged over all load steps. These findings contribute new insights from high-resolution experimental mapping of composite damage states that can guide and inform mechanical enhancement approaches and improved damage models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.