Abstract

A novel biointerface bearing zwitterionic carboxybetaine moieties was developed for effective resistance to nonspecific adsorption of proteins and blood cells. Self-assembled thin films (SAFs) of (N,N-dimethylaminopropyl) trimethoxysilane were formed as mattress layers by either vapor or solution deposition. Subsequently, the tertiary amine head groups on SAFs were reacted with β-propiolactone to give zwitterionic carboxybetaine moieties via in situ synthesis. The optimal reaction time of 8 h for both preparation methods was verified by static contact angle measurements. According to the X-ray photoelectron spectroscopy, 67.3% of amine groups on SAFs prepared from the vapor deposition was converted to the zwitterionic structures after reaction of β-propiolactone. The antifouling properties of the zwitterionic biointerfaces were quantitatively evaluated in the presence of protein solutions using a quartz crystal microbalance with dissipation, showing a great improvement by factors of 6.5 and 20.2 from tertiary amine SAFs and bare SiO2 surfaces, respectively. More importantly, the zwitterionic SAFs were brought to contact with undiluted human blood in chaotic-mixer microfluidic systems; the results present their capability to effectively repel blood cell adhesion. Accordingly, in this work, development of carboxybetaine SAFs offers a facile yet effective strategy to fabricate biocompatible biointerfaces for a variety of potential applications in surface coatings for medical devices.

Highlights

  • Biocompatible surface coatings are highly desirable for biomedical devices and implants for in vitro and in vivo exploitation [1,2,3]

  • The contact angles of the 3°-N amine silanized thin film (SAF) prepared via vapor and solution deposition were 57.5°± 2.2°and 51.4°± 0.9°(p < 0.05, n = 3), respectively

  • The synthesis of β-propiolactone molecules was sequentially performed over a period of 23 h, showing that after 8 h reaction, the contact angles of carboxybetaine self-assembled thin films (CB SAFs) reached the minimum

Read more

Summary

Introduction

Biocompatible surface coatings are highly desirable for biomedical devices and implants for in vitro and in vivo exploitation [1,2,3]. Biocompatible surface chemistry should allow the devices to perform with an appropriate host response in a specific situation [4]. Nonspecific adsorption on devices is routinely observed and has caused seriously pathogenic problems, such as thrombosis and bacterial infection. Taking an example of thrombosis, its formation is typically initiated when proteins adsorb, subsequently denaturing on surfaces to trigger activation of platelets, and in turn allowing clotting to occur. In this sense, one can rationally envisage that blocking the protein adsorption on the surfaces enables the resisting of the formation of thrombosis and enhancing the biocompatibility of devices [5]. We have witnessed a great deal of achievements made with the aim of suppressing biofouling [6,7,8,9]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.